Archives For FreeBSD

Looks like my attempt to cheap out on SSD for TK1 has backfired. I went for the cheapest SSD available in local store (Toshiba Q300) but when I tried to checkout FreeBSD sources to the drive I got bunch of WRITE_FPDMA_QUEUED timeouts and system locked up. The same thing happened when I tried to perform checkout on Linux. The drive itself was OK, it survived “svn co …/head” and dd when connected using USB-to-SATA adapter.

I believe the problem was that TK1 SATA voltage was out of Toshiba’s tolerance range. I replaced Q300 with Samsung EVO 850 and was able to checkout sources and finish buildworld using SSD for src/obj storage.

FreeBSD on Jetson TK1

June 28, 2016 — 4 Comments

I finally got around to BSDify my Jetson TK1. Here is short summary of what is involved. And to save you some scrolling here are artifacts obtained from whole ordeal:

Jetson TK1


First of all – my TK1 didn’t have U-Boot. Type of bootloader depends on the version of Linux4Tegra TK1 comes with. Mine had L4T R19, with some kind of “not u-boot” bootloader. My first attempt was to use tegrarcm tool, it uses libusb, so it’s possible to build it on FreeBSD with some elbow grease, but once I tried to run it – it gave me cryptic errors and USB is not my strong skill so I took low road and installed Ubuntu VM. For what is’s worth I got the same kind of error on Ubuntu.

Next step was to use official update procedure described in Since I wasn’t going to boot Linux on the board I didn’t need sample rootfs. So the whole procedure was:

- Go to L4T R21.4 page
- Download Tegra124_Linux_R21.4.0_armhf.tbz2
- Unpack it
- Connect microUSB port on device to Linux VM
- Get device into recover mode: power cycle, press and hold recovery button, press and release power button, release recovery button
- Run ./ jetson-tk1 mmcblk0p1, this should rewrite eMMC flash on the board and after reboot you will get u-boot prompt on serial console


At this point you can boot FreeBSD on TK1. I use netboot for most of my device so in this case it was: build and deploy world to /src/FreeBSD/tftproot/tk1, build and install kernel to the same directory, copy /src/FreeBSD/tftproot/tk1/boot/kernel/kernel to kernel.TK1 in tftproot directory, add entry do DHCP config and restart DHCP server. Entry looks like this:

host tk1 {
        hardware ethernet 00:04:4b:49:08:9e;
        filename "kernel.TK1";
        option root-path "/src/FreeBSD/tftproot/tk1";
        option root-opts "nolockd";
        option routers;

And also you need to add this to sys/arm/conf/JETSON-TK1 before building kernel:

options        BOOTP
options        BOOTP_NFSROOT
options        BOOTP_COMPAT
options        BOOTP_NFSV3

On the device you just run “dhcp; bootelf” and voila – it just works.


Next step was to get ubldr running. I prefer suing ubldr because it gives more control over boot process accessible from booted FreeBSD system. ubldr requires U-Boot with API support, so I had to rebuild U-Boot from sources provided by nvidia with added #define CONFIG_API and all standard patches from sysutils/u-boot-* ports. Build procedure is standard:

export ARCH=arm
export CROSS_COMPILE=arm-linux-gnueabihf-
make jetson-tk1_config

It will generate multiple files, u-boot-dtb-tegra.bin is the one you want.

To reflash board with non-standard u-boot run ./ -L /path/to/u-boot-dtb-tegra.bin jetson-tk1 mmcblk0p1

Back to ubldr. It was easy to build and load it. Build script:

export TARGET=arm
export TARGET_ARCH=armv6
export SRCROOT=/src/FreeBSD/wip
export MAKEOBJDIRPREFIX=/src/FreeBSD/obj
export MAKESYSPATH=$SRCROOT/share/mk

set -x
set -e

buildenv=`make -C $SRCROOT TARGET_ARCH=armv6 buildenvvars`
eval $buildenv make -C $SRCROOT/sys/boot -m $MAKESYSPATH obj
eval $buildenv make -C $SRCROOT/sys/boot -m $MAKESYSPATH clean
eval $buildenv make -C $SRCROOT/sys/boot -m $MAKESYSPATH UBLDR_LOADADDR=0x80600000 all

sudo cp /src/FreeBSD/obj/arm.armv6/src/FreeBSD/wip/sys/boot/arm/uboot/ubldr /src/FreeBSD/tftpboot/ubldr.TK1

Obviously, kernel.TK1 in DHCP config needs to be replaced with ubldr.TK1. 0×80600000 is some value I came up with by looking at u-boot default environment. Something not high enough to overlap with kernel and not low enough to overlap with u-boot.

And that’s where thing got hairy. To load ubldr and then netboot kernel, you need to set u-boot env loaderdev variable first: setenv loaderdev net; saveenv. And then do the same thing as above: dhcp; bootelf. Unfortunately I got this:

## Starting application at 0x81000098 ...
Consoles: U-Boot console
Compatible U-Boot API signature found @0xffa3e410

FreeBSD/armv6 U-Boot loader, Revision 1.2
(, Mon Jun 27 19:59:22 PDT 2016)

DRAM: 2048MB
MMC: no card present
MMC Device 2 not found
MMC Device 3 not found
MMC: no card present
MMC: no card present
MMC: no card present
MMC: no card present
MMC: no card present
MMC: no card present
MMC Device 2 not found
Number of U-Boot devices: 3
U-Boot env: loaderdev='net'
Found U-Boot device: disk
Found U-Boot device: net
Booting from net0:
panic: arp: no response for

--> Press a key on the console to reboot <--
resetting ...

After some heavy thinking and code digging problem was narrowed down to u-boot network driver drivers/net/rtl8169.c. Instead of returning 0 on success and negative value on error it returns number of bytes sent on success and zero on error. Which confused ubldr into thinking nothing is sent, so recv part of exchange was never invoked. After fixing this issue kernel was loaded just fine but hang right afert

Using DTB compiled into kernel.
Kernel entry at 0x0x80800100...
Kernel args: (null)

Logn story short - it was caused by enabled D-Cache so I had to add


to u-boot config and go through rebuild/reflash cycle again. After this whole boot chain went through right to login prompt.

My next goal is to make TK1 self-contained box: get base system installed on eMMC and use attached SSD as scratch disk for swap and builds.

Few weeks back Ralf Nolden, who is *BSD champion in Qt community, urged me to clean-up and submit my Qt5-related projects to upstream and scfb platform plugin was picked as a test dummy. It took 12 iterations to get things right, along the way plugin was renamed to bsdfb, but eventually patch has been merged.

Next two candidates are bsdkeyboard and bsdsysmouse input plugins.

Two months ago I tried to setup dev environment using FreeBSD Vagrant box just to find out that FreeBSD does not support VirtualBox shared folders. After some googling I found Li-Wen Hsu’s github repository with some work in this area. Li-Wen and Will Andrews has already done major chunk of work: patches to VirtualBox build system, skeleton VFS driver, API to talk to hypervisor but hit a block with some implementation details in VirtualBox’s virtual-memory compatibility layer. Will provided very comprehensive analysis of the problem.

Li-Wen was occupied with some other projects so he gave me his OK to work on shared folder support on my own. Will’s suggestion was easy to implement – lock only userland memory, like Solaris driver does. VFS part was more complicated though: fs nodes, vnode, their lifecycle and locking is too hairy for drive-by hacking. I used tmpfs as a reference to learn some VFS magic, but a lot of things are still obscure. Nevertheless after few weeks of tinkering first milestone has been achieved: I can mount/unmount shared VirtualBox folder and navigate mounted filesystem without immediate kernel panic. Next goal (if time permits): stable and non-leaking read-only filesystem.

To those who do not track FreeBSD commit messages: I committed gpiokeys driver to -CURRENT as r299475. The driver is not enabled in any of the kernels but can be built as a loadable module.

For now it stays disconnected from main build because it breaks some MIPS kernel configs. Configs in question include “modules/gpio” as part of MODULES_OVERRIDE variable and since gpiokeys can be built only with FDT-enabled kernel the build fails.

gpiokeys can be used as a base for more input device driver: “gpio-keys-polled” and “gpio-matrix-keypad“. I do not have hardware to test this at the moment. If you do and you’re looking for small FreeBSD project to work on – here you go.

Next step on my ToDo list is to try tricking people into committing evdev patch, which at the moment is the only requirement for unlocking touchscreen support.

Qt 5.6 is finally out so I thought I’d give it a spin on my Raspberry Pi. Previously I used cross-compilation but this time I thought I’d spend some time in trying to create ports Qt modules. There is Qt 5.5.1 in ports and it’s nicely split into sub-ports and most of gory details are hidden in library. The problem with it is it’s highly coupled with Xorg stuff and I didn’t find easy way to squeeze non-desktop use cases into current infrastructure. So I just created new custom devel/qt56 port.

In order to get it done as fast as possible I took several shortcuts: all the stuff is installed to /usr/local/qt5 directory, there is no meta-port for submodules to share common part yet. Also besides base the only module I packaged (I was particularly interested in it) was QtMultimedia. Should be fairly easy to fix last 2 items though.

Qt layer for UI provider is called QPA: Qt Platform Abstraction. There are quite a few of them but I am familiar and interested in two: plain framebuffer and eglfs. Plain framebuffer stock QPA plugin is called linuxfb and naturally we can’t use it for FreeBSD. Luckily there is a lot of similarities between Linux fb and syscons(or vt) fb (you can’t get very innovative with framebuffer) so writing QPA support for scfb was easy. It can be used with any generic SoC with framebuffer support: AM335x(beaglebone black), i.MX6(Wandboard), NVIDIA Tegra, Pi.

elgfs is full-screen OpenGL mode. OpenGL implementation depends on SoC vendor, e.g. Pi’s library is provided by raspberrypi-userland port. If we had OpenGL support for AM335x it would have been provided by PowerVR userland libraries. As far as I understand eglfs can’t be made universal: each implementation has its own quirks so you have to specify target OpenGL vendor during build time. So far we support eglfs only for Raspberry Pi thanks to Broadcom’s open-sourcing kernel drivers and userland libraries.

Then there is question of input. When you start your application from console you have several options to get user’s input: keyboard, mouse, touchscreen. Common way to do this on Linux is through evdev which is a universal ways to access these kinds of devices. There is effort to get this functionality on FreeBSD so when it’s there stock input plugins could be used as-is. Until then there are two non-standard plugins by yours truly: bsdkeyboard and bsdsysmouse.

scfb, bsdysmouse, and bsdkeyboard are included in experimental ports as patches.

All in all experience of getting Qt 5.6 running on FreeBSD/Pi was smooth. And to make this post more entertining here are two demos running on my Pi2 with official touchscreen.

Qt demo player with visualizer (src):

OpenGL demo with Qt logo in it (src):

Short demo of FreeBSD running on Beaglebone Black with 4DCAPE-43T

I used vendor-provided am335x-boneblack-4dcape-43t.dts file to generate dtb, you can download compiled blob here. The system running on demo is gpiokeys branch of my git repo: . Patch against -head is here.

If you’re interested only in LCD screen – it’s supported by -head but you’ll need to either add device gpiobacklight to BEAGLEBONE kernel config or enable LCD backlight manually using gpioctl: gpioctl -f /dev/gpioc1 18 1. gpiokeys is somewhat more complex thing and still WIP, there are some pieces missing in HEAD I had to hack around to make them work. And I haven’t started research on touchscreen yet.

FDT overlay is an extension to FDT format that lets user to modify base FDT run-time: add new nodes, add new properties to existing nodes or modify existing properties. It’s useful when you have base board and some extension units like cape/shield for Pi/BBB or loadable FPGA logic for Zynq. I will not go into details you can find internals described on Adafruit or Raspberry Pi websites.

When dealing with overlays there are two options where to handle them: loader or kernel. Managing overlays at kernel level gives more flexibility but requires more related logic, e.g. re-init pinmux after applying overlay, re-run newbus probe/attach. On the other hand loader-level support is quite straightforward and involves nothing but DTB modifications and it’s a natural first step to adding FDT overlays to FreeBSD.

Proposed solution is to add fdt_overlays variable that contains coma-separated list of dtbo files, e.g.: “bbb-no-hdmi.dtbo,bbb-4dcape-43.dtbo”. This variable can be defined either as a loader(8) variable or as a u-boot env variable. During the boot ubldr load base DTB and right before passing control to the kernel it would go through files, load them from /boot/dtb/ direсtory on root partition and apply to the base blob. Final DTB would be passed to kernel.

You can find patch and review comments to it on Differential site: D3180. It contains:
- Extension to dtc to generate dynamic symbols and fixup info.
- ubldr fdt_overlays support

As Warner Losh mentioned it’s not clear yet how to deal with dynamic symbols support patch. It’s not part of official dtc tree though it’s accepted by RPi and BBB communities.

Qt5 for FreeBSD/Pi

January 14, 2015 — 1 Comment

Build SD card image using crochet-freebsd with option VideoCore enabled. Mount either SD card itself of image to build host

mount /dev/mmcsd0s2a /pi

Checkout Qt5 sources and patch them

cd /src
git clone git:// qt5
cd qt5
git checkout 5.4.0
./init-repository --module-subset=$MODULES

fetch -q -o - | patch -p1

Configure, build and install Qt5 to SD card

./configure -platform unsupported/freebsd-clang -no-openssl -opengl es2 -device freebsd-rasp-pi-clang -device-option CROSS_COMPILE=/usr/armv6-freebsd/usr/bin/ -sysroot /pi/ -no-gcc-sysroot -opensource -confirm-license -optimized-qmake -release -prefix /usr/local/Qt5 -no-pch -nomake tests -nomake examples -plugin-sql-sqlite

gmake -j `sysctl -n hw.ncpu`
sudo gmake install

You need BSD-specific plugins to enable mouse and keyboard input in EGLFS mode

cd /src/
git clone
cd qt5-bsd-input
sudo gmake install

Build application you’d like run and install it. I use one of the examples here

cd /src/qt5/qtbase/examples/opengl/cube
sudo gmake install

Unmount SD card, boot Pi, make sure vchiq is loaded

root@raspberry-pi:~ # kldload

Start application

root@raspberry-pi:~ # /usr/local/Qt5/examples/opengl/cube/cube -plugin bsdkeyboard -plugin bsdsysmouse

If you see something like this:

EGL Error : Could not create the egl surface: error = 0x3003

Or this:

QOpenGLFramebufferObject: Framebuffer incomplete attachment.

It means you need to increase GPU memory by setting gpu_mem in config.txt. Amount depends on framebuffer resolution. 128Mb works for me on 1920×1080 display.

bsdsysmouse plugin uses /dev/sysmouse by default, so you either should have moused running or specify actual mouse device, e.g.:

root@raspberry-pi:~ # cube -plugin bsdkeyboard -plugin bsdsysmouse:/dev/ums0

bsdkeyboard uses STDIN as input device, so if you’re trying to start app from serial console it should be something like this:

root@raspberry-pi:~ # cube -plugin bsdkeyboard -plugin bsdsysmouse < /dev/ttyv0

Audio on Raspberry Pi

January 9, 2015 — Leave a comment

With stable VCHIQ driver next obvious target was to add VCHIQ-based audio support. So let me introduce to you: vchiq_audio, first take. It’s part of vchiq-freebsd repo so if you use Crochet to build SD card image just enable option VideoCore in config file and module will be automatically included.

From shell run kldload vchiq_audio and you’re good to do. I believe that audio output is picked up automatically by VideoCore so if you have HDMI connected it’s probably going to be HDMI. I do not have device to confirm this. Adding knob to control audio output (auto, headphones, HDMI) is on my ToDo list.

Quality is not ideal though. From quick tests it seems to work fine on system with rootfs on NFS but there are audio drops on SD-based system while playing mp3 over NFS. I’m going to debug and stresstest it more thoroughly next week.

Short instruction on how to install mpg321 package on RPi:

env PACKAGESITE= SIGNATURE_TYPE=none pkg bootstrap

mkdir -p /usr/local/etc/pkg/repos
cd /usr/local/etc/pkg/repos
echo 'FreeBSD: { enabled: no }' > FreeBSD.conf

cat > chips.ysv.conf <<__EOF__
chips.ysv: {
  url: "",
  mirror_type: "http",
  signature_type: "none",
  enabled: yes

pkg install mpg321